Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation.
نویسندگان
چکیده
BACKGROUND Bcl-2 protects cells from apoptosis and provides a survival advantage to cells over-expressing this oncogene. In addition, over expression of Bcl-2 renders cell resistant to radiation therapy. Recently, dichloroacetate (DCA) was proven to potentiate the apoptotic machinery by interacting with Bcl-2. In this study, we investigated whether treating human prostate cancer cells with DCA could modulate Bcl-2 expression and if the modulation in Bcl-2 expression could render the Bcl-2 over expressing cells more susceptible to cytotoxicity effects of radiation. METHODS PC-3-Bcl-2 and PC-3-Neo human prostate cancer cells treated with DCA in addition to irradiation were analyzed in vitro for changes in proliferation, clonogenic survival, apoptosis, cell cycle phase distribution, mitochondrial membrane potential, and expression of Bcl-2, Bcl-xL, Bax, or Bak proteins. RESULTS DCA alone produced significant cytotoxic effects and was associated with G1 cell cycle arrest. Furthermore, DCA was associated with an increased rate of apoptosis. The combination of DCA with irradiation sensitized both cell lines to radiation's killing effects. Treatment of PC-3-Bcl-2 or PC-3-Neo with DCA and irradiation resulted in marked changes in various members of the Bcl-2 family. In addition, DCA therapy resulted in a significant change in mitochondria membrane potential, thus supporting the notion that DCAs effect is on the mitochondria. CONCLUSIONS This is the first study to demonstrate DCA can effectively sensitize wild-type and over expressing Bcl-2 human prostate cancer cells to radiation by modulating the expression of key members of the Bcl-2 family. Together, these findings warrant further evaluation of the combination of DCA and irradiation.
منابع مشابه
Synergistic anticancer potential of dichloroacetate and estradiol analogue exerting their effect via ROS-JNK-Bcl-2-mediated signalling pathways.
BACKGROUND C9, a newly in silico-designed inhibitor of microtubule dynamics induces G2/M arrest culminating in apoptosis. Dichloroacetate (DCA) inhibits pyruvate dehydrogenase kinase, an enzyme that promotes pyruvate entry into mitochondria. The use of antitumor drugs targeting different cancer features can be a more effective way to overcome drug resistance. METHODS The influence of C9 (130 ...
متن کاملRadiosensitizing effects of Sestrin2 in PC3 prostate cancer cells
Objective(s): The stress-responsive genes of Sestrin family are recognized as new tumor suppressor genes in breast carcinoma, however, the function of Sestrin family in human prostate cancer is not clear. Ionizing radiation (IR) is known to induce Sestrin gene expression in breast cancer cells. However, the response of Sestrin to IR has not been reported in PC3 prostate cancer cells. Materials ...
متن کاملSynergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been recently demonstrated as a promising nontoxic antineoplastic agent that promotes apoptosis of cancer cells. In the present study, we aimed to investigate the antitumor effect of DCA combined with 5-Fluorouracil (5-FU) on colorectal cancer (CRC) cells. Four human CRC cell lines were treated with DCA or 5-FU, or ...
متن کاملDichloroacetate induces apoptosis in endometrial cancer cells.
PURPOSE A recent landmark study demonstrated that Dichloroacetate (DCA) treatment promoted apoptosis in lung, breast, and glioblastoma cancer cell lines by shifting metabolism from aerobic glycolysis to glucose oxidation coupled with NFAT-Kv1.5 axis remodeling. The objective of this study was to determine whether DCA induces apoptosis in endometrial cancer cells and to assess apoptotic mechanis...
متن کاملEffect of Radiation on self-renewality of prostate cancer stem cells.
Introduction: CSCs have been identified in prostate cancer (PCa), one of the most diagnosed malignancies in men over the world, for which radiation resistance is a major problem in the treatment of advanced stages. Cancer stem cells (CSCs) have the ability to self-renew and differentiate to give rise to heterogeneous phenotype of the tumor cells. It is believed that CSCs are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Prostate
دوره 68 11 شماره
صفحات -
تاریخ انتشار 2008